
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjms20

International Journal of Modelling and Simulation

ISSN: 0228-6203 (Print) 1925-7082 (Online) Journal homepage: https://www.tandfonline.com/loi/tjms20

Experiences with Devs Modelling and Simulation

G. Wainer, A. Barylko & J. Beyoglonián

To cite this article: G. Wainer, A. Barylko & J. Beyoglonián (2001) Experiences with Devs
Modelling and Simulation, International Journal of Modelling and Simulation, 21:2, 138-147, DOI:
10.1080/02286203.2001.11442196

To link to this article: https://doi.org/10.1080/02286203.2001.11442196

Published online: 15 Jul 2015.

Submit your article to this journal

Article views: 7

View related articles

https://www.tandfonline.com/action/journalInformation?journalCode=tjms20
https://www.tandfonline.com/loi/tjms20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02286203.2001.11442196
https://doi.org/10.1080/02286203.2001.11442196
https://www.tandfonline.com/action/authorSubmission?journalCode=tjms20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjms20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/02286203.2001.11442196
https://www.tandfonline.com/doi/mlt/10.1080/02286203.2001.11442196

International Journal of Modelling and Simulation, Vol. 21, No.2, 2001

EXPERIENCES WITH DEVS MODELLING
AND SIMULATION

G. Wainer,* A. Barylko,** and J. Beyoglonian**

Abstract

This paper presents the results obtained with a tool used to model

and simulate discrete event systems, based on Discrete Event systems

Specification (DEVS) formalism. Its main features are presented and

its use shown through application examples. The use of this formal

approach allowed development of safe and cost-effective simulations.

A simulated processor was built to study the different levels of a

computer system. The goal was to help the full comprehension

of the computer behaviour used in computer organization courses.

The environment helped the students understand these complex

systems and also allowed them to make empirical comparisons and

performance studies for educational purposes.

KeyWords

Discrete event simulation, modelling methodologies, simulation tools,

computer organization, computer sY/ltem levels

1. Introduction

In recent years, new modelling paradigms allowed the
simulation of complex dynamic systems to improve. The
use of a formal modelling paradigm allows improvement in
the development of executable models by validating their
behaviour against that of the real system.

Several efforts have focused on the specifications of
Discrete Event Dynamic Systems (DEDS) (e.g., produc
tion plants, computer networks, Very Large Scale Integra
tion (VLSI) circuits, etc.). These real systems have special
features that make their modelling different from those
with continuous variables. DEDS trajectories are piecewise
constant and event driven, hence the modelling formalisms
should use continuous time and discrete variables. Con
tinuous time allows accurate timing representation, im
proving the precision of conceptual models, and reducing
the processing requirements. Higher timing precision can

• Systems and Computer Engineering Dept., Carleton Univer
sity, 4456 Mackenzie Bldg., 1125 Colonel By Drive, Ottawa,
ON K1S 5B6 Canada; e-mail: gwainer@sce.carleton.ca

•• Departamento de Computaci6n, Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, (1428) Pabe1l6n
I. Ciudad Universitaria, Buenos Aires, Argentina; e-mail:
{abarylko, jbeyoglo}@dc.uba.ar

Recommended by Dr. Petr Nedoma
(paper no. 1998-119)

138

be obtained without using small discrete time segments
(which increase the number of simulation cycles).

Decomposition mechanisms should be provided to re
flect the characteristics of the phenomena to be modelled
(usually of a hierarchical nature). System dynamics should
be captured, supplying facilities to translate the formal
specifications into executable models. In [1], a modelling
formalism for DEDS with these goals was proposed. It
is a continuous time formalism known as DEVS that al
lows modular descriptions of models that can be integrated
using a hierarchical approach.

This work analyzes the characteristics of a general
application tool used to build and simulate DEVS models.
The main goal is to show the application of the formal
approach. The article is organized as follows. Section 2
recalls the main features of the DEVS formalism. Section
3 presents the main characteristics of the tool. Use of
the tool is then presented using several examples. Finally,
Section 6 presents the design of a simulated computer for
educational purposes.

2. DEVS Formalism

A real system modelled, using the DEVS paradigm, can be
described as being composed of several submodels. Each
model can either be behavioural (atomic) or structural
(coupled). Each basic model consists of a time base, in
puts, states, outputs, and functions used to compute the
next states and outputs. As the formalism is closed under
closure, coupled models can be integrated into a model hi
erarchy. The use of this hierarchical modelling strategy al
lows reuse of created and tested models, enhancing security
of the simulations, reducing testing time, and improving
productivity.

2.1 Atomic Models

A DEVS atomic model can be formally described as:

M =< I, X, S, Y, <5int , <5ext , A, D >

where:
I is the model's interface

X is the input events set
S is the state set

Y is the output events set
8int is the internal transition function
8ext is the external transition function

>. is the output function
D is the elapsed time function

Each model is seen as having an interface consisting of
input and output ports used to communicate with other
models. The input external events (events received from
other models) are received in input ports and the model
specification should define the behaviour of the external
transition function under such inputs. The internal transi
tion function is activated after consumption of the elapsed
time, with the goal of producing internal state changes.
The desired results are spread through the output ports
and sent by the output function, which executes before the
internal transition.

2.2 Coupled Models

A basic model can be integrated with other DEVS basic
models to build a structural model (see Fig. 1) . These
models are called coupled, and formally defined as:

where:
I is the model's interface

X is the set of input events
Y is the set of output events
D is an index for the components of the coupled

model
Vi E D, Mi is a basic DEVS model (that is, an atomic or

coupled model), defined by:

Ii is the set of influencees of model i (that is,
the models that can be influenced by outputs
of model i), and Vj Eli, Zij is the i to j
translation function.

Finally, select is the tie-breaking selector.
The basic idea is that, each coupled model consists of a

set of basic models (atomic or coupled), connected through
the input/output ports. The influencees of the model will
determine which output values should be sent

Figure 1. Coupling of DEVS models (AI, A3, A4: atomic
models).

139

models. The translation function is in charge of translating
outputs of a model into inputs for the other models. To
do this, an index of influencees is created for each model
(Ii). This index defines that the outputs of model Mi are
connected to inputs in model M j , where j is an element of
h Finally, if several models are activated simultaneously,
the select function defines which models must be executed
first.

2.3 Simulation Mechanism

One main advantage of the DEVS paradigm is that the
models can be specified independently of the simulation
mechanism. [1] also suggested an abstract simulation
mechanism that will be briefly introduced in this section,
as the tool presented here is based on it.

The simulation process begins by initializing all of
the component models. The state of each basic model is
defined and the next internal transition for each is then
computed. The abstract simulator analyzes the external
events and scheduled internal transitions and chooses the
first model to be activated (called the imminent model).
In the simulated time t, each component Mi has a state
Si and elapsed time ei. The next event in the system will
be the lower-scheduled time one. If there is more than one
component with that time, the select function will be used
to choose the imminent model.

Once chosen, the imminent model is then activated.
If a basic model receives an external event x E X, the
model executes the external transition function 8ext . Con
sequently, the next internal event (that is, those produced
by the consumption of time in the model) is re-scheduled.
When the time for an internal event arrives, the imminent
model executes its internal transition function. The first
step is to execute the output function >. and generate an
output event y E Y. Each output is sent to the influencees
as a translated input, using the Zij translation function.
The internal transition function 8int then executes, result
ing in a state change and scheduling of a new internal tran
sition. The behaviour of internal and external transition
functions depends on the model's behaviour.

3. GAD

GAD is a tool for General Application DEVS modelling
and simulation. It was built to implement the theoreti
cal concepts specified in the previous section [2]. Atomic
models can be programmed and incorporated onto a basic
class hierarchy, programmed in C++. A specification lan
guage allows definition of the model's coupling, including
initial values and external events. In this section, the main
features of the tool will briefly be described.

As stated, GAD is based on the DEVS formalism
and provides an environment for building discrete event
models. The system architecture was built using the
abstract simulator concepts described in [3], as seen in
Fig. 2.

Model Processor
pm...,or pan _lit
idem _lIild
InputList OutputList
addlnputPoriinpuiPoris
addOutputPoris aulPorl,
_tClwu!!! IastChw.o

I

,...iYo(hIitMemgel
,..,.;...(IntemalM ... ap)
lOCOiw(ExtemaIMossap)
"'COMo(OutpotMemge)
Model ident
IIOXtClw!&o IastCIwIge
"'c:eivo(Do:neM ... ,ap)
,mlOutpuI p ... nt

1 J
Atomic-Model Coupled-Model Simulator Co-ordinator Root Co-ordinator

Simdator Plwe children R!CliveD NCOiw(InitM.,,,,,,) "","Mo(InitM ... ,ap) du!d top simJlate()
lnitfimdiol1() addModol() _doll-ist ...,.iw(IntemalM."ap) ",coin(IntemalM.,sap) 'lOP() addExtEnnt,O
intemaJr"""tiol1() type ~., "","in(ExtemalMessap) "","i .. (ExtemalMossap) "","i .. (oulpulMessap)

",coin(OutputM."ap) aulp1tl'\mdionO ailIn!h O ident
extemaIFUllClioI1()

Figure 2. Basic class hierarchy.

There are two basic classes: Models and Processors.
The Models class is devoted to defining conceptual models
and the Processors class to implementing the simulation
mechanism. Different simulation processors are used: Sim
ulators, Coordinators, and Root-Coordinators related
with different models: Simulators are associated with
Atomic models and Coordinators with Coupled models.

Model has instance variables processor (to identify its
associated processor), parent (linked to the coupled model
containing this model), and inport and outport (to specify
model interaction). The Atomic class is used to repre
sent the atomic basic models. The methods int-transfn,
ext-transfn, outputfn and time-advancefn represent the
internal transition, external transition, output, and time
advancement functions, respectively. The functions must
be overloaded by the programmer in order to define the de
sired behaviour, depending on the system to be modelled.
C oupled-Model implements the hierarchical constructions
defined by the modelling formalism. A coupled model is
defined by specifying its components (children) and the
coupling relationships. The coupling is specified by the
receivers and influences instance variables, which allows
definition of the Zij function.

The Processors are built to execute the abstract simu
lation procedures explained earlier. Simulators and Coor
dinators are built to manage atomic and coupled models.
The Root-Coordinator drives the simulation in its global
aspects. It keeps the global time and it is in charge of the
simulation's start and finish. It also collects the output
results. It is related with the highest-level coupled model
and its corresponding coordinator.

The coupling relationship is recorded in the instance
variables devs-component and processor of the Processor
and Model, respectively. The parent variable indicates the
parent processor in the simulators' hierarchy. The times
of the last event and the event are recorded in order to
identify the imminent children and verify correctness in
the message's simulated times.

140

>lent do.ru-t
",ceMo(do>IeM ... ap)
Exl.mol E .. nt,

IOCaklmmCIUld() stopTima

Processors

Models

'--_....--.--.--' _ __ _ t Coupled

Atomic

Figure 3. Models/ Processors relationship.

The simulation process is carried out by data transfers,
through message passing. The messages include informa
tion related to the message's origin, time of the related
event, and a content, consisting of a port and a value.
There are four messages: * (used to signal a state change,
due to an internal event), X (used when an external event
arrives), Y (the model's output), and done (indicating a
model has finished with its task). The simulation advances
through message passing between the Processors. When
the imminent model is selected, a *-message is sent to its
simulator, passing through the middle level coordinators.
When an external message arrives, an X-message is con
sumed and the external transition function executed. The
simulators return done-messages and Y-messages that are
converted to new *-messages and X-messages, respectively.

The M essageAdm class in Fig. 4 is devoted to receiv
ing the message invocation between modules and manage
their communication. Message is the base class used to
define the message's interchange. Each message carries
data of the model generating the value and its event time.

Message

Model sender
nmemsgTime

IntlMessage IntemalMessage ExtemalMessage DoneMessage

Polldestina1iOl1
Value value

Figure 4. Messages' class hierarchy.

The M odelAdm class manages the created models. Its
main functions are:

• Creation of new models: creates an instance of a model
and assigns it a unique identifier. This is the only class
that can create new models and

• association of identifiers with models: all existing
models are included in a list, which is kept by the
model manager.

The modeller must define the model's specification
(and coupling), external input events, and finish time of
the simulation. The model is specified using a language
developed for that purpose. The SimLoader class is
in charge of these functions, providing an interface to
load the simulator configuration. There are two possible
procedures used to start the simulation. The first one
uses the StandAloneLoader class, responsible for loading
the parameters by using the shell's command line. The
N etworkLoader class is responsible for getting the same
parameters, using TCP /IP services. In this way, the
simulator can be executed as a simulation server and the
parameters loaded remotely, getting the results in a remote
fashion.

Finally, the Simulator class is responsible for creation
of the model tree and establishing links between ports,
using the specification. To do so, the IniFile class is used
to parse the model's specification. The root coordinator is
in charge of the model's loading. Once the model hierarchy
is built, the simulation can begin. To do so, external
events are added, an event list is created, and stop time
initialized.

4. Model Definition Using GAD

As stated in the previous section, the atomic models and
their coupling must be specified. The coupled models are
defined using a specification language, which is developed
for that purpose. The description for each model includes
the input/output ports and the coupling with other mod
els. Instead, atomic models must be incorporated in the
class hierarchy as subclasses of the Atomic Model class.
The following sections will explain how to incorporate the
atomic and coupled models to be simulated.

141

lime nextChange Port destination
VoIuevalUe

4.1 Atomic Models

A new atomic model is generated by designing a
new class, derived from the Atomic class. First,
the model must be registered using the M ainSimula
tor.registerNewAtomicsO method. Then the following
methods should be overloaded:

• initFunction: This method is invoked at the beginning
of the simulation. It allows definition of initial values
and execution of the initial functions for the model.
When this method is executed, the value of sigma
(next scheduled event) is set to infinite and the model
phase to passive.

• extemalFunction: This method is invoked when an
external event arrives from an input port.

• internalFunction: This method is invoked when the
value of sigma is zero, since an internal event has
occurred.

• outputFunction: This method executes before the
internal function, allowing outputs for the model to be
provided.

These methods have been built by following the formal
specifications of DEVS models, defined in Section 2.1. In
addition, several primitives have been defined, allowing
interaction with the abstract simulator:

• holdln(state, time): It is used to define that model
as remaining in state during time. When this time is
consumed (sigma = 0), the model executes an internal
transition. This function is used to implement the D
(lifetime) function of the DEVS formal specification.

• passivateO: The model enters in passive mode and
will be reactivated by an external event.

• sendOutput(time, port, value): It sends an output
message through the given port.

• stateO: It returns the present model phase.

• getParameter(modelName, parameterName): It al
lows access to the model state variables.

4.2 Coupled Models

Coupled models are defined using a specification language,
specially defined for this purpose. This specification lan
guage also follows the formal definitions for DEVS coupled
models. Therefore, each of the components defined in Sec
tion 2.2. are included. Each coupled model is composed
using a set of definitions. Optionally, configuration values
for the atomic models may be included. Each set indicates
the name of the model and its attributes. The [top] model
defines the coupled model at the top level.

Four properties must be configured: components (us
ing the clause "components"), output ports (clause "ouf'),
input ports (clause "in") and links between models (clause
"link"). The syntax is the following:

• Components: It describes the models composing the
coupled model. The syntax is model_ name@class_
name. The name of the model is needed because we
can use more than one instance of the same model. The
class's name can reference either atomic or coupled
models. The last ones should be defined in the same
configuration file as a new group. The order used
when the models are set defines the priority for the
select function (that is, the execution order under
simultaneous events).

• Out: It defines the names of output ports.

• In: It defines the names of input ports.

• Link: It describes the internal and external coupling
schema. The syntax is source_port!@modelj des
tination _ port!@modelj. The name of the model is
optional because if not indicated, the coupled model
being defined will be used.

5. Experimental Framework for Single Processor
Execution

The tool was tested by building several models, includ
ing examples of computer Local Area Networks (LANs),
Personal Communication Systems (PCS), routing in Wide
Area Networks (WANs), plane flow in an airport, etc. This
section shows implementation of the simplest models. We
do not provide an exhaustive analysis of the problem be
cause we intend to show the use of the main features and
applications of the tool.

Let us consider the modelling and simulation of a com
puter processor. The environment to be modelled includes
a group of users providing tasks to be executed, a task
scheduler with a certain scheduling policy, and a processor
[3]. When a new task arrives, the task scheduler faces
a delay before beginning its processing. When the task
starts, it executes during a fixed amount of time. The
scheduler is non-preemptive (the tasks execute without be
ing interrupted) with a first-in-first-out (FIFO) scheduling
policy.

5.1 Model Definition

In this case, the model is composed of four atomic models,
each representing a different function of the processing

142

environment. The first one (called Generator) provides
an experimental framework to generate new tasks. The
second model (Queue) simulates the FIFO task scheduler.
The third one (Processor) models the processor executing
the system tasks. Finally, the Transducer model records
the metrics generated by the simulation.

The behaviour of each atomic model is the following:

• Generator: It generates new tasks, transmitted
through an output port. The output value represents a
task identifier (unique during the simulation process).
The period used to create a new process is generated
using random numbers with probability distributions
chosen during the configuration process.

• Processor: This model simulates the tasks' execution.
A new task is received through an input port and
the processor remains busy until processing is finished.
Then it sends the process identifier through an output
port. The processing time is generated using random
numbers with exponential distribution.

• Queue: This queue receives new tasks and stores
them while the processor is busy. The queue was
implemented using a non-preemptive FIFO policy.

• Transducer: This model records metrics and com
putes statistics of the simulation. Two measures are
considered: throughput (tasks executed per time unit)
and CPU usage (average of tasks waiting in the ready
queue).

The functionality of each of these models is coded
in the tool using the definitions provided in the previous
section. As stated earlier, these functions follow the formal
specification for DEVS. For instance, the Queue model can
be formally described as:

Queue =< X, S, Y, Jint , Jext , A, D >

where:
X E N U {stop} U {done}
S E {preparationTime, timeLeft E R+ }U{ elements

E {N}*}
YEN

These sets and the transition functions are described,
as explained in the previous section, in the Fig. 5.

After each model is defined as was outlined in Section
5.1, the models are then coupled to form a multicomponent
model. This is shown in Fig. 6.

The Generator output is connected to the ready queue
(to record the new task) and the Transducer (to record
the length of each process). The task is kept for at least
a preparation time. This time is used to represent the
overhead of the task scheduler. Next, its identifier is sent
through the out port and is received by the Processor model
to be executed. Once a task has finished, the Processor
outputs its number through the out port, which will be sent
to the Queue and the Transducer. The Transducer records
information about the processes and sends the results,
using the output ports Throughput and Cpu usage. For
instance, the top model in this hierarchy is formally des-

class Queue public Atomic {
public:

Queue() ;
protected:

Model &initFunction();
Model &externalFunction(canst ExternalMessage &);
Model &internalFunction(canst InternalMessage &);
Model &outputFunction(canst InternalMessage &);

private:
canst Port &in, &stop, &done;
Port &out;
Time preparationTime, timeLeft;
list<value> elements ;

Model &Queue::externalFunction(canst ExternalMessage &msg) {
if (msg .port () == in) {

elements.push back(msg.value());
if(elements.size() == 1)

II A new job has arrived
II Add it to the queue
II The queue was empty

this->holdIn(active, preparationTime); II Then, the first job must be prepared.
}
if(msg.port() == done)

elements.pop front();
if(lelements.empty()

this->holdln(active,

II A job has finished
II Delete it from the queue

II Take the next element in the queue
preparationTime); II This job must be prepared to execute

}
if(msg.port() == stop) II Stop the transmision: buffer overflow

if(this->state()==active && msg.value()) { II The queue was active
timeLeft = msg.time()-this->lastChange(); II Record the time left

this->passivate(); II Deactivate the queue
}
else I I Reactivate the queue

if(this->state() == passive && lmsg.value())
this->holdIn(active, timeLeft); II Simulate the time left

return *this;

Model &Queue::outputFunction(canst InternalMessage &msg) {
this->sendOutput(msg.time(), out, elements.front());
return *this; II Transmit the value of the first element in the queue

Model &Queue::internalFunction(canst InternalMessage &) {
this->passivate() ;
return *this;

Figure 5. Definition example: Queue model's header.

Consumer

in - ... out in in .- • ---Queue
CPU

I
stop

-done

out out . -

Figure 6. Model interconnection.

cribed by:

where:

x = {0}

Top

-

143

Throughput·

Generator
out , .. arrived ... thr •..

Trasducer

-+ "solved u%,

~puu,., •
Y = {Throughput, CpuUsage / Throughput,

CpuUsage E R+}
D = { Transducer, Generator, Consumer}

IGenerator = { Transducer, Consumer}
ICons'Umer = { Transducer}

ITransd'Ucer = { Self}

Figure 7. Coupled Model's definition.

12

/
8 /"

12

8

4

o

/'
4 /

I..~::"" ~
o rr~

o 25 50 75 100 125

(a)

~~
,"-.
o 25 50 75 100 125

(b)

Figure 8. Simulation results

150

150

Fig. 7 shows the definition of this formal description
using the coupling specification language of the tool.

5.2 Simulation Results

Several tests were made by combining different probability
distributions with different parameters. This procedure
was done by simply changing a parameter in the coupled
model specification. The main goal was to test the validity
of the models and correct use of the tool. Fig. 8(a) shows
the results obtained, generating jobs every ten time units
(average) and processing them in 30 time units (average).

144

Consequently, the tasks are queued waiting for the pro
cessor (the growing curve) and the throughput is around
two tasks per minute. Fig. 8(b) shows the results obtained
using a generator with 30 sec. of activation and a process
ing time of ten time units. In this case, the throughput
also tends to two tasks per minute, but most of the time,
the processor is free because the works are consumed much
faster than the generation of new tasks.

6. ALPHA-O: A Simulated Computer

The tool has been used to study the multiple levels of
the organization of a computer. Theoretical study in this
field usually gives students an incomplete and sometime
erroneous view of how a computer system works. The
lack of practical experience can make that the underlying
complexity of the subsystems and their interaction may not
be understood completely. The main problems are related
to the existence of several abstraction levels (assembly
language, instruction set, microprogramming, and digital
logic). The introduction of higher levels (programming
languages, operating systems) makes the task even more
complex.

At present, there are several simulators (for instance,
[4-7]) devoted to analyzing architecture properties but
most of them are devoted to the study of architecture
performance. They allow for building of the main ar
chitecture blocks and defining their interaction, but none
are devoted to meeting educational purposes. Moreover,
several are commercial applications unavailable for public
domain or massive use in computer organization courses.
As they are devoted to analyzing architectural properties,
several levels needed to study computer organization (for
instance, the digital logic level or assembly language level)
are not supported. In addition, no changes can be done
(for instance, to implement logical gates level using the
composing circuits).

Alpha-O [8] is a simulated computer, built for academic
purposes. It allows one to understand the behaviour of
a computer system from the architectural point of view.
It also permits one to make performance analyses of the
subsystems. Each of the system's levels are simulated indi
vidually. At present, an extension using the DEVS formal
ism allowed to build components as atomic models could
be coupled and reused. They could be tested separately
and lately, integrated to complete construction of the com
puter. The following sections will explain the design of this
computer.

6.1 Digital Logic Level

The lower level specified considered each model as a basic
circuit built using Digital Logic [9]. Complex circuits are
built as a set of primitive components: the logical gates
AND, NOT, OR, NOR and XOR (the last two were derived
from the first ones). Using the basic logical gates, higher
level circuits can be built as coupled models. The following
are included:

• Comparator: It simulates a circuit comparing two
inputs, determining which is different from the other

(including also inequality comparators).

• Multiplexor: Input lines are detected and one is cho
sen. This value is transmitted, ignoring the other
values.

• Decoder: It activates one output line (there are 2n

outputs) corresponding to a number composed by the
input values (n input lines).

• D-latch: These circuits simulate the storage of infor
mation into the processor. The d-latch stores one bit
and is driven by the pulse of a clock.

• Shifter: It shifts a set of bits one bit to the left or to
the right, filling the empty places with zeros.

• Adder: It adds two bits by considering a third input
representing the carry bit. The result of the addition
and propagation of the carry are returned.

• Register: It is built by connecting several d-latches.

• One-bit AL U: The unit has only four one-bit opera
tions: ADD, AND, OR and NOT. It was built using
the decoder and adder units, showing the use of simple
circuits used to build complex ones (see Fig. 10).

AD
BO

A1
91

A2
B2

A3
B3

A4
94
B5

At;
96 '/-

m

~ ~=-------------~
(a)

(d)

(f)

(b)

• N-bits AL U: It was built by connecting several one-bit
ALUs. A row of one-bit ALUs should be connected,
linking each carry-out with the next carry-in.

A

B

FO

F1

decoder

Figure 10. One-bit ALU.

The size of the circuits are dynamic and a graphical
interface allows one to see the circuits' basic schemes (the
previous figures were generated using the library). The in-

(c)

(e)

(g)

Figure 9. Modelled circuits (a) comparator (b) multiplexor (c) decoder (d) D-latch (e) shifter (f) adder (g) register.

145

PC

Addless
bus MAR

Data
bus MBR

Register
wilIdows

Other
pm!
p1UpOse
registers

LocelBus

Figure 11. Structure of the simulated microaxchitecture.

terfa~e also shows the changes in the input lines' values,
allowmg one to study the detailed behaviour of each circuit.

6.2 Microarchitecture Level

As a second step, the circuits are used to simulate the
execution of a microprogrammed processor. The microax
chitecture components axe supposed to be connected by a
single local bus. The Control Unit executes a micropro
gram for each instruction, using a language that allows
defining input/output flow between the processor's com
ponents. Each component is defined as a coupled models
using the Digital Logic level, and when other models were
needed, new atomic models were built. The structure of
the microaxchitecture is defined in Fig. 11.

It is supposed that the memory, processor, and in
put/output SUbsystems axe connected by synchronic buses.
The delays for each micro operation were also specified,
therefore, the total execution time for each instruction can
be computed. Each microinstruction can be traced show-. ' mg the status of the local bus and registers, and the data
path.

A cache memory with 64 bytes' cache was also sim
ulated [10]. It has 32 words divided into eight blocks of
eight bytes each. Several algorithms were tested, including
Direct, Associative (FIFO, Least Frequently Used (LFU),
Random, and Least Recently Used (LRC)), and Set Asso
ciative Mappings. Vaxious tests were executed, compaxing
execution time of the microcode operations using the origi
nal simulator and the ones with cache memory. The results
obtained can be seen Fig. 12.

The Instruction Level set is encapsulated into the
Control Unit behaviour. The SPARC axchitecture was
chosen as a reference to build the model, allowing use of a
RISC (Reduced Instruction Set Computer) platform in low
cost processors. The complexity of this level was reduced
by restraining the complexity of the processor [11].

7. Conclusion

This work introduced the main features of GAD, a tool for
General Application DEVS modelling and simulation. The

146

3500

"""'-
3000

-+-T88t1
__ Test 2

2500 r---... -6-Test3

2000 ~
-M-Te.t4

~ ~ --.......
1500

I
:; ~ s

1 ! ~ s s c
~ ~ ~ ~ ~
:; :; :; :;

"" :; :; :; ., ., ., .,
"

., '" '" '" '"

Figure 12. Test results of caching with different poli
cies. DM: Direct Mapping. AM: Associative. SAM: Set
Associative.

tool was built using a formal modelling paxadigm, improv
ing the safety and development times of the simulations.
The tool executes in a stand-alone mode or as a simulation
server that can be executed remotely.

Several tests were caxried out, proving the usefulness of
the tool. A data base of models can be created, enhancing
the development process. The tool is being used for
educational purposes and the models presented used to
test multiprocessor configurations.

A complete set of models was used to simulate a simple
computer. The resulting environment can be used in
computer organization courses to analyse and understand
the basic behaviour of the different levels of a computer
system. Interaction between the levels can be studied and
an experimental evaluation of the system can be done.

The tools axe public domain and can be obtained
at ''http://www.dc.uba.ax/people/proyinv /celldevs". A
new modelling paxadigm called Timed Cell-DEVS, was
also implemented. The formalism is based on the DEVS
and Asynchronous Cellulax Automata paxadigms. The
concepts of transport or inertial delays used in the circuit
modelling domain have been combined, allowing simple
specification of accurate timed models. The specifications
have been defined for binaxy or three-state systems. The
formalisms allow automatic definition of the spaces and
eases verification of the models, allowing efficient and cost
effective development of simulators.

Acknowledgements

This work is an extension of those previously presented at
lASTED AMS'98. It was paxtially supported by USENIX
foundation, ANPCYT Project 11-04460 and UBACYT
Projects JWlO and TX-004.

References

[1] B. Zeigler, Theory of modelling and simulation (New York:
Wiley, 1976).

[2] A. Barylko, J. Beyoglonian, & G. Wainer, GAD: A general
application DEVS environment, Proc. lASTED Applied Mod
elling and Simulation AMS'98, 1998.

[3] B. Zeigler, Object oriented simulation with hierarchical modular
models (Academic Press, 1990).

[4] M. Zagar & D. Basch, Microprocessor architecture design with
ATLAS, IEEE Design and Test of Computers, 13(3), 1997.

[5] J. Edmonson & M. Reilly, Performance simulation of an Alpha
microprocessor, IEEE Computer, 1998.

[6] M. Rosenblum, E. Bugnion, S. Devine & S. Herrod, Using the
SimOS machine simulator to study complex computer systems,
ACM Tmns. Modelling and Computer Simulation, 1997.

[7] K. Shanmugan, V. Frost, & W. La Rue, A block-oriented
network simulator (BONeS), Simulation, 1992.

[8] G. Wainer, Alpha-O: a simulated computer as a tool for Com
puter Organization courses, Proc. lASTED Applied Modelling
and Simulation AMS'98, 1998.

[9] A. Ferrari, S. Romano, & G. Wainer, Implementation of a digital
logic libmry, Internal Report, Departamento de Computacion,
Universidad de Buenos Aires, 1998.

[10] R. Romero & G. Wainer, Implementation of a simulated
cache memory for the Alpha-O processor, Internal Report,
Departamento de Computacion, Universidad de Buenos Aires,
1998.

[11] A. Troccoli & G. Wainer, CRAPS: A simulator for the SPARC
processor, Internal Report, Departamento de Computacion,
Universidad de Buenos Aires, 1998.

Biographies

Amir G. Barylko received the M.Sc. degree in 1998 from
the Universidad de Buenos Aires, Argentina. He is a Ph.D.
candidate at the same university and a teaching assistant
in the same department. He has published several articles
in the field of discrete-events simulation and participated
in a research project in the area. He has been a free-lance
consultant since 1990.

Jorge Beyoglonian received the M.Sc. degree in 1998
from the Universidad de Buenos Aires, Argentina and he is

147

a Ph.D. candidate at the same university. He has published
several articles in the field of discrete-events simulation,
and participated in a research project in this area. He has
been a free-lance consultant since 1990.

Gabriel A . Wainer received his
Licentiate degree (M.Sc., 1993)
and his Ph.D. degree (1998, with
honours) from the Universidad
de Buenos Aires, Argentina, and
DIAM/IUSPIM, Universit d'Aix
Marseille III, France, respectively.
He is an Assistant Professor at
the SCE Dept., Carleton Uni
versity (Ottawa, Canada). He
was an Assistant Professor at the
Computer Sciences Dept. of the

Universidad de Buenos Aires, Argentina, and has been a
teaching and research assistant in that department since
1988, and a Visiting Research Scholar at the University
of Arizona, Tucson, AZ. He has published more than 50
articles in the field of operating systems, real-time systems
and discrete-event simulation including two books. He
is a member of the Board of Directors of the Society for
Computer Simulation International, and a member of a
group on standarization of DEVS modelling tools. His
current research interests include modelling methodologies
and tools, modelling and simulation of cellular models,
parallel execution of models and real-time simulators.

